Grundbegriffe der KI vorgestellt

(Geschätzte Lesezeit: 2 - 3 Minuten)
Deutscher Bundestag 2

Künstliche Intelligenz - Gesellschaftliche Verantwortung und wirtschaftliche Potenziale 

Die Enquete-Kommission »Künstliche Intelligenz - Gesellschaftliche Verantwortung und wirtschaftliche, soziale und ökologische Potenziale« ist am Montagmorgen mit begriffsklärenden Vorträgen in eine ganztägige Klausurtagung gestartet. Fünf Sachverständige der Kommission erläuterten dabei in öffentlicher Sitzung Grundbegriffe rund um die »Künstliche Intelligenz«. In nicht-öffentlicher Sitzung schloss sich eine Fragerunde an. Im weiteren Verlauf des Montags wollen die Mitglieder der Kommission zudem in Gruppen den Arbeitsauftrag der Kommission konkretisieren.

Aljoscha Burchardt (DFKI, Deutsches Forschungszentrum für Künstliche Intelligenz) führte aus, dass der Begriff »Künstliche Intelligenz« (KI) schwer zu definieren sei, weil auch der Begriff der menschlichen Intelligenz kaum definiert sei. Burchardt unterschied grundlegend zwischen »starker KI« als Vorstellung eines den Menschen imitierenden Systems und »schwacher KI« als Einzeltechnologien zur »smarten Mensch-Maschinen-Interaktion«. Über »starke KI« werde im seriösen Umfeld eigentlich nicht geredet. Der Fokus liegt laut Burchardt vielmehr auf der »schwachen KI«. In diesem Sinne ist laut Burchardt KI, insbesondere durch das maschinelle Lernen, das wesentliche Mittel der »zweiten Welle der Digitalisierung«.

Antonio Krüger (ebenfalls DFKI) stellte die KI-Forschung als einen »Kanon von interdisziplinären Wissenschaften« dar. So differenzierte er etwa zwischen ingenieurwissenschaftlichen Zielen der KI-Entwicklung, die den wesentlichen Einsatzbereich ausmachten, und kognitionswissenschaftlichen Zielen. Im letzteren Bereich werde KI genutzt, um kognitive Prozesse besser zu verstehen. Krüger führte aus, dass KI-Systeme aktuell grundsätzlich besser mit aus menschlicher Sicht schweren Problemen, beispielsweise dem Suchen von Fehlern in Computerchips oder das Spielen von Schach auf höchsten Niveau, umgehen könnten. Aus menschlicher Sicht leichte Probleme, beispielsweise eine SIM-Karte zu wechseln oder einen Witz zu verstehen, seien für KI-Systeme hingegen schwer zu lösen.

Katharina Zweig (TU Kaiserslautern) ging in ihrem Vortrag auf zwei Grundängste gegenüber der KI ein: Menschen fürchteten demnach sowohl eine KI, die dichten könne und somit den Menschen ersetze, als auch eine KI, die richten könne, also Menschen bewertet beziehungsweise klassifiziert. Zweig skizzierte ein Konzept, nach welchen Kriterien die Anwendung von KI-Systemen im Bewertungs- beziehungsweise Klassifikationsbereich reguliert werden könnte.

Hannah Bast (Albert-Ludwigs-Universität Freiburg) stellte die grundsätzliche Funktionsweise des maschinellen Lernens (ML) und neuraler Netzwerke vor und grenzte diese Methode von klassischen Algorithmen ab. ML ermögliche es, komplexe Probleme wie Bildverarbeitung oder Spracherkennung ohne Vorgabe von Regeln anzugehen, was mit klassischen Algorithmen nicht möglich sei. ML revolutioniere die Informatik und die Welt, sagte Bast. Das sei »kein Hype, sondern einfach Fakt«. Allerdings sei die Anwendung auf klar eingegrenzte Probleme beschränkt.

Sami Haddadin (TU München) trug zu KI-Anwendungen im Bereich der Robotik vor. KI führe in diesem Feld zu Innovationssprüngen, denn es ermögliche Anwendungen etwa im Bereich der Montage, die für die bisherigen Systeme nicht möglich gewesen seien. Haddadin führte dazu ein Beispiel aus der Forschung aus, bei dem es darum geht, Robotern das Einführen von Schlüsseln beizubringen und gelernte Fähigkeiten auf andere Problemkonstellationen zu übertragen.

   

  LINKS  

  •  ...

 

Weg für Alternative zu Cookie-Bannern ist (fast) frei
Der Digitalausschuss des Deutschen Bundestages hat am Mittwochabend eine Verordnung der Bundesregierung angenommen, mit der Internetnutzer eine anwenderfreundliche Alternative »zu der Vielzahl zu treffender Einzelentscheidungen« bei Cookie-...
20 Prozent der Unternehmen in Österreich nutzen bereits künstliche Intelligenz
Künstliche Intelligenz (KI): Nutzung in Unternehmen innerhalb eines Jahres fast verdoppelt Laut aktuellen Daten der Statistik Austria setzt 2024 bereits jedes fünfte Unternehmen KI-Technologien ein, 2023 war es erst jedes zehnte. Getrieben wird...
Generative künstliche Intelligenz prägt die Weiterbildung der Zukunft
Generative KI revolutioniert Weiterbildung: Trends und Herausforderungen für Unternehmen Generative Künstliche Intelligenz (GenAI) gewinnt in der beruflichen Weiterbildung zunehmend an Bedeutung. Laut einer aktuellen internationalen Studie der...

 

 

Die fünf meistgelesenen Artikel der letzten 30 Tage in dieser Kategorie.

 

  • Akademische Redefreiheit an deutschen Hochschulen

    Studie: Keine strukturelle Kultur des Cancelns in der Wissenschaft Eine aktuelle Studie des Deutschen Zentrums für Hochschul- und Wissenschaftsforschung (DZHW) untersucht die akademische Meinungsfreiheit an deutschen Hochschulen und kommt zu...

  • Evaluierung des Startchancen-Programms

    Konsortium für die Evaluation des Startchancen-Programms nimmt seine Arbeit auf Das von Bund und Ländern initiierte Startchancen-Programm ist nach Angaben des BMBF das größte und nachhaltigste Bildungsprogramm in der Geschichte der Bundesrepublik. Ziel ist es,...

  • Langzeitstudie belegt: Gesellschaftliche Narrative beeinflussen Studienleistungen

    Stärken von sozioökonomisch benachteiligten Studierenden anerkennen bringt bessere Noten Eine neue Studie unter der Leitung der Psychologin Christina Bauer von der Universität Wien zeigt, wie stark soziale Narrative das Selbstbild und die...

  • Fachkräftemangel im Bildungsbereich: Entlastungs- und Reformvorschläge

    In Deutschland spitzt sich der Fachkräftemangel im Bildungsbereich weiter zu. Dies betrifft nicht nur die frühkindliche Bildung, Schule und Erwachsenenbildung, sondern auch den Bereich der Diversität. Das Leibniz-Forschungsnetzwerk...

  • Selbstverstärkendes Lernen: Chancen und Risiken im Lernprozess

    Wie unüberwachtes Lernen unser Verständnis prägt – und manchmal irreführt Selbstverstärkendes Lernen, auch unüberwachtes Lernen genannt, kann einerseits helfen, neue Dinge zu verstehen, birgt aber auch die Gefahr, dass sich falsche Überzeugungen...

.